Sabtu, 20 Oktober 2012

ASETILENA



Asetilena (Nama sistematis: etuna) adalah suatu hidrokarbon yang tergolong kepada alkuna, dengan rumus C2H2. Asetilena merupakan alkuna yang paling sederhana, karena hanya terdiri dari dua atom karbon dan dua atom hidrogen. Pada asetilena, kedua karbon terikat melalui ikatan rangkap tiga, dan masing-masing atom karbon memiliki hibridisasi orbital sp untuk ikatan sigma. Hal ini menyebabkan keempat atom pada asetilena terletak pada satu garis lurus, dengan sudut C-C-H sebesar 180°.
Asetilena ditemukan oleh Edmund Davy pada 1836, yang menyebutnya karburet baru dari hidrogen. Nama asetilena diberikan oleh kimiawan Perancis Marcellin Berthelot, pada 1860.
Pembuatan
Bahan utama pembuatan asetilena adalah kalsium karbonat dan batubara. Kalsium karbonat diubah terlebih dahulu menjadi kalsium oksida dan batubara diubah menjadi arang, dan keduanya direaksikan menjadi kalsium karbida dan karbon monoksida,
CaO + 3C → CaC2 + CO
Kalsium karbida (atau kalsium asetilida) kemudian direaksikan dengan air dengan berbagai metode, menghasilkan asetilena dan kalsium hidroksida. Reaksi ini ditemukan oleh Friedrich Wohler di 1862.
CaC2 + 2H2O → Ca(OH)2 + C2H2
Sintesis kalsium karbida memerlukan temperatur yang amat tinggi, ~2000 derajat Celsius, sehingga reaksi tersebut dilakukan di dalam sebuah tungku bunga api listrik. Reaksi ini merupakan bagian penting dari revolusi di bidang kimia pada akhir 1800-an, dengan adanya proyek tenaga hidroelektrik di Air Terjun Niagara.
Asetilena juga dapat dihasilkan dengan reaksi pembakaran parsial metana dengan oksigen atau dengan reaksi cracking dari hidrokarbon yang lebih besar.
Berthelot dapat membuat asetilena dari metanol, etanol, etilena, atau eter, dengan cara melewatkan gas atau uap dari salah satu zat tersebut melalui tabung merah panas. Berthelot juga menemukan asetilena dapat dibuat dengan cara memberikan kejutan listrik terhadap gas-gas sianogen dan hidrogen. Ia juga dapat membuat asetilena dengan mereaksikan hidrogen murni dan karbon secara langsung dengan menggunakan tegangan listrik.

Reaksi

Reaksi pirolisis asetilena dimulai pada temperatur 400 °C(673 K) (cukup rendah untuk hidrokarbon). Hasil utamanya adalah dimer vinilasetilena (C4H4) dan benzena. Pada temperatur diatas 900 °C(1173 K), hasil utama reaksi adalah jelaga (karbon hitam).
Berthelot menunjukkan bahwa senyawa alifatik dapat diubah menjadi senyawa aromatik, dengan memanaskan asetilena di dalam tabung reaksi menghasilkan benzena dan sedikit toluena. Berthelot juga mengoksidasi asetilena menghasilkan asam asetat dan asam oksalat. Ia juga menemukan reduksi asetilena dengan hidrogen menghasilkan etilena dan etana.
Polimerasi asetilena dengan katalis Ziegler-Natta menghasilkan lapisan poliasetilena. Poliasetilena, rantai molekul karbon dengan ikatan tunggal dan ganda berselang-seling, merupakan semikonduktor organik yang pertama sekali ditemukan; reaksi dengan iodin menghasilkan bahan yang amat konduktif.

Reaksi-reaksi Reppe

Walter Reppe menemukan bahwa asetilena dapat bereaksi pada tekanan tinggi dengan katalis logam berat menghasilkan senyawa-senyawa yang penting dalam industri.


Permasalahannya mengapa asetilena bereaksi dengan alkohol, hidrogen sianida, hidrogen klorida atau asam karboksilat tidak menghasilkan rangkap tiga lagi, sedangkan dengan aldehida msih tetap menghasilkan rangkap tiga, gimana misalnya kalau asetilena bereaksi dengan alkohol tetap juga menjadi rangkap tiga?




Jumat, 12 Oktober 2012

TAUKAH KAMU APA ITU SENYAWA ALKUNA?


Alkuna adalah hidrokarbon tak jenuh yang memiliki ikatan rangkap tiga. Secara umum, rumus kimianya CnH2n-2. Salah satunya adalah etuna yang disebut juga sebagai asetilen dalam perdagangan atau sebagai pengelasan.
Contoh dari senyawa alkuna :
 Sifat – Sifat Alkuna
Sifat fisika alkuna secara umum mirip dengan alkana dan alkena, seperti :
  1. Tidak larut dalam air
  2. Alkuna dengan jumlah atom C sedikit berwujud gas, dengan jumlah atom C sedang berwujud cair, dan dengan jumlah atom C banyak berwujud padat.
  3. Berupa gas tak berwarna dan baunya khas
  4. mudah teroksidasi atau mudah meledak.
Titik didih beberapa senyawa alkuna disajikan pada Tabel 12.4.
Tabel 12.4. Titik Didih beberapa Senyawa Alkuna

Alkuna sebagai hidrokakbon tak jenuh, memiliki sifat menyerupai alkena tetapi lebih reaktif. Reaktiftas alkuna disebabkan karena terbongkarnya ikatan rangkap tiga dan membentuk senyawa baru. Atas dasar ini maka reaksi alkuna umumnya reaksi adisi. Contoh reaksi adisi alkuna dengan gas halogen, seperti gas bromine (Br2), klorine (Cl2) dan iodine (I2). Ikatan rangkap tiga terlepas dan senyawa halogen masuk pada kedua atom karbon. Reaksi terus berlangsung sehingga seluruh ikatan rangkapnya terlepas, dan membentuk senyawa haloalkana. Persamaan reaksi ditunjukan pada Bagan 12.27.
Bagan 12.27. Reaksi adisi alkuna dengan halogen

Pembuatan alkuna
x  Dehidrohalogenasi alkil halida
x  Reaksi metal asetilida dengan alkil halida primer

Beberapa hidrokarbon lain
Seperti dikatakan dalam klasifikasi hidrokarbon, masih banyak hidrokarbon lainnya, tetapi rumus umumnya kadang-kadang sama dengan rumus umum yang ada antara lain rumus umum alkena. Rumus umum alkena juga menunjukkan hidrokarbon siklis yang jenuh yang dikenal sebagai  siklana (siklo-alkana) dan siklo-propana sebagai suku pertamanya mempunyai harga n = 3. Alkandiena dan siklo-alkena mempunyai rumus umum yang sama dengan alkuna. Rumus molekul C5H8 dapat merupakan pentuna, isoprena (monomer dari karet alam atau siklopentana).


Pemanfaatan Alkuna seperti pemanfaatan gas etuna (asetilena) untuk pengelasan. Gas asetilena dibakar dengan gas Oksigen mengahsilkan panas yang tinggi ditandai dengan kenaikan suhu sampai dengan 3000 º C, sangat cocok untuk mengelas logam, perhatikan Gambar 12.29. Selain itu, alkuna juga dapat dipergunakan sebagai bahan baku pembuatan senyawa lain, karena senyawa ini cukup reaktif.


Gambar 12.29. pemanfaatan gas asetilena untuk pengelasan



                                                      

Rumus struktur etuna: 
 
                                         
 
 
                
 
 
Rumus sturuktur etana:

                                           

Rumus struktur etena:


                                        


*Permasalahannya mengapa hanya etuna yang di jadikan bahan tuk ngelas sedangkan turunan alkana yang lain seperti etana dan etena mempunyai bentuk yang sama dengan etuna?